Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 648: 123585, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952560

RESUMO

It is estimated that nearly a half of the world's population over 30 years old suffer from some kind of periodontal disease (PD). Although preventable, PD can pose a significant health burden to patients, causing from pain and discomfort to disfigurement and death. The management of PD often requires surgical procedures accompanied of systemic antibiotic and anti-inflammatory treatments. Curcumin (CUR), a potent anti-inflammatory and antimicrobial active, has shown great promise in the management of PD; however, its effects are often limited by its low bioavailability. In this work, we report the development of electrospun nanofibres (NFs) loaded with CUR nanocrystals (NCs) for the management of PD. NCs of 100 nm were obtained by media milling and loaded into dissolving polyvinyl alcohol NFs using electrospinning. The resultant NCs-in-NFs dissolved in water spontaneously, releasing NCs with a particle size of âˆ¼120 nm. The physiochemical characterisation of the systems indicated the absence of chemical interactions between drug and polymer, and nanofibres with an amorphous nature. In vitro release profiles demonstrated that the NCs had a significantly higher dissolution rate (∼100 % at day 40) than the control group (approximately 6 % at day 40), which consisted of NFs containing a physical mixture of the drug and stabiliser. Finally, mucosal deposition studies demonstrated a 10-fold higher capacity of the novel NCs-in-NFs system to deposit CUR ex vivo using excised neonatal porcine mucosal tissue, when compared to the control group.


Assuntos
Curcumina , Nanofibras , Nanopartículas , Recém-Nascido , Humanos , Animais , Suínos , Adulto , Curcumina/química , Nanofibras/química , Nanopartículas/química , Anti-Inflamatórios , Tamanho da Partícula , Portadores de Fármacos/química
2.
Mater Today Bio ; 17: 100471, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36345362

RESUMO

Eutectogels (Egels) are an emerging class of soft ionic materials outperforming traditional temperature-intolerant hydrogels and costly ionogels. Due to their excellent elasticity, non-volatile nature, and adhesion properties, Egels are attracting a great deal of interest in the biomedical space. Herein, we report the first example of adhesive Egels loading drug nanocrystals (Egel-NCs) for controlled delivery to mucosal tissues. These soft materials were prepared using gelatin, glycerine, a deep eutectic solvent (DES) based on choline hydrochloride and glycerol, and nanocrystallised curcumin, a model drug with potent antimicrobial and anti-inflammatory activities. We first explored the impact of the biopolymer concentration on the viscoelastic and mechanical properties of the networks. Thanks to the dynamic interactions between gelatin and the DES, the Egel showed excellent stretchability and elasticity (up to ≈160%), reversible gel-sol phase transition at mild temperature (≈50 â€‹°C), 3D-printing ability, and good adhesion to mucin protein (stickiness ≈40 â€‹kPa). In vitro release profiles demonstrated the ability of the NCs-based Egel to deliver curcumin for up to four weeks and deposit significantly higher drug amounts in excised porcine mucosa compared to the control cohort. All in all, this study opens new prospects in designing soft adhesive materials for long-acting drug delivery and paves the way to explore novel eutectic systems with multiple therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...